16 research outputs found

    Reversal of Misfolding: Prion Disease Behavioral and Physiological Impairments Recover following Postnatal Neuronal Deletion of the PrP Gene

    Get PDF
    The prionoses are fatal neurodegenerative diseases caused by a pathogenic protein, PrP scrapie, that derives from misfolding of a normal form, PrPc. These diseases progress through stages. A new study by Mallucci et al. in this issue of Neuron shows that prion disease may be reversed in mice by selective removal of the gene in neurons after early physiological, cognitive, and pathological features have developed

    In Silico Whole Genome Association Scan for Murine Prepulse Inhibition

    Get PDF
    Background The complex trait of prepulse inhibition (PPI) is a sensory gating measure related to schizophrenia and can be measured in mice. Large-scale public repositories of inbred mouse strain genotypes and phenotypes such as PPI can be used to detect Quantitative Trait Loci (QTLs) in silico. However, the method has been criticized for issues including insufficient number of strains, not controlling for false discoveries, the complex haplotype structure of inbred mice, and failing to account for genotypic and phenotypic subgroups. Methodology/Principal Findings We have implemented a method that addresses these issues by incorporating phylogenetic analyses, multilevel regression with mixed effects, and false discovery rate (FDR) control. A genome-wide scan for PPI was conducted using over 17,000 single nucleotide polymorphisms (SNPs) in 37 strains phenotyped. Eighty-nine SNPs were significant at a false discovery rate (FDR) of 5%. After accounting for long-range linkage disequilibrium, we found 3 independent QTLs located on murine chromosomes 1 and 13. One of the PPI positives corresponds to a region of human chromosome 6p which includes DTNBP1, a gene implicated in schizophrenia. Another region includes the gene Tsn which alters PPI when knocked out. These genes also appear to have correlated expression with PPI. Conclusions/Significance These results support the usefulness of using an improved in silico mapping method to identify QTLs for complex traits such as PPI which can be then be used for to help identify loci influencing schizophrenia in humans

    Systems biology: A primer

    No full text

    α-Synuclein alters Toll-like receptor expression

    Get PDF
    Parkinson’s disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson’s disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of Toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern

    Microglial activation and antioxidant responses induced by the Parkinson's disease protein α-synuclein.

    Get PDF
    Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder typified by tremor, rigidity, akinesia and postural instability due in part to the loss of dopamine within the nigrostriatal system. The pathologic features of this disorder include the loss of substantia nigra dopamine neurons and attendant striatal terminals, the presence of large protein-rich neuronal inclusions containing fibrillar α-synuclein and increased numbers of activated microglia. Evidence suggests that both misfolded α-synuclein and oxidative stress play an important role in the pathogenesis of sporadic PD. Here we review evidence that α-synuclein activates glia inducing inflammation and that Nrf2-directed phase-II antioxidant enzymes play an important role in PD. We also provide new evidence that the expression of antioxidant enzymes regulated in part by Nrf2 is increased in a mouse model of α-synuclein overexpression. We show that misfolded α-synuclein directly activates microglia inducing the production and release of the proinflammatory cytokine, TNF-α, and increasing antioxidant enzyme expression. Importantly, we demonstrate that the precise structure of α-synuclein is important for induction of this proinflammatory pathway. This complex α-synuclein-directed glial response highlights the importance of protein misfolding, oxidative stress and inflammation in PD and represents a potential locus for the development of novel therapeutics focused on induction of the Nrf2-directed antioxidant pathway and inhibition of protein misfolding

    Plasma phospholipids identify antecedent memory impairment in older adults

    No full text
    Alzheimer\u27s disease causes a progressive dementia that currently affects over 35 million individuals worldwide and is expected to affect 115 million by 2050 (ref. 1). There are no cures or disease-modifying therapies, and this may be due to our inability to detect the disease before it has progressed to produce evident memory loss and functional decline. Biomarkers of preclinical disease will be critical to the development of disease-modifying or even preventative therapies2. Unfortunately, current biomarkers for early disease, including cerebrospinal fluid tau and amyloid-β levels 3, structural and functional magnetic resonance imaging4 and the recent use of brain amyloid imaging5 or inflammaging6, are limited because they are either invasive, time-consuming or expensive. Blood-based biomarkers may be a more attractive option, but none can currently detect preclinical Alzheimer\u27s disease with the required sensitivity and specificity7. Herein, we describe our lipidomic approach to detecting preclinical Alzheimer\u27s disease in a group of cognitively normal older adults. We discovered and validated a set of ten lipids from peripheral blood that predicted phenoconversion to either amnestic mild cognitive impairment or Alzheimer\u27s disease within a 2-3 year timeframe with over 90% accuracy. This biomarker panel, reflecting cell membrane integrity, may be sensitive to early neurodegeneration of preclinical Alzheimer\u27s disease. © 2014 Nature America, Inc. All rights reserved
    corecore